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Abstract

Point cloud is an important type of geometric data
structure. Due to its irregular format, most researchers
transform such data to regular 3D voxel grids or collections
of images. This, however, renders data unnecessarily
voluminous and causes issues. In this paper, we design a
novel type of neural network that directly consumes point
clouds, which well respects the permutation invariance of
points in the input. Our network, named PointNet, pro-
vides a unified architecture for applications ranging from
object classification, part segmentation, to scene semantic
parsing. Though simple, PointNet is highly efficient and
effective. Empirically, it shows strong performance on
par or even better than state of the art. Theoretically,
we provide analysis towards understanding of what the
network has learnt and why the network is robust with
respect to input perturbation and corruption.

1. Introduction

In this paper we explore deep learning architectures
capable of reasoning about 3D geometric data such as
point clouds or meshes. Typical convolutional architectures
require highly regular input data formats, like those of
image grids or 3D voxels, in order to perform weight
sharing and other kernel optimizations. Since point clouds
or meshes are not in a regular format, most researchers
typically transform such data to regular 3D voxel grids or
collections of images (e.g, views) before feeding them to
a deep net architecture. This data representation transfor-
mation, however, renders the resulting data unnecessarily
voluminous — while also introducing quantization artifacts
that can obscure natural invariances of the data.

For this reason we focus on a different input rep-
resentation for 3D geometry using simply point clouds
– and name our resulting deep nets PointNets. Point
clouds are simple and unified structures that avoid the
combinatorial irregularities and complexities of meshes,
and thus are easier to learn from. The PointNet, however,
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Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tasks.

still has to respect the fact that a point cloud is just a
set of points and therefore invariant to permutations of its
members, necessitating certain symmetrizations in the net
computation. Further invariances to rigid motions also need
to be considered.

Our PointNet is a unified architecture that directly
takes point clouds as input and outputs either class labels
for the entire input or per point segment/part labels for
each point of the input. The basic architecture of our
network is surprisingly simple as in the initial stages each
point is processed identically and independently. In the
basic setting each point is represented by just its three
coordinates (x, y, z). Additional dimensions may be added
by computing normals and other local or global features.

Key to our approach is the use of a single symmetric
function, max pooling. Effectively the network learns a
set of optimization functions/criteria that select interesting
or informative points of the point cloud and encode the
reason for their selection. The final fully connected layers
of the network aggregate these learnt optimal values into the
global descriptor for the entire shape as mentioned above
(shape classification) or are used to predict per point labels
(shape segmentation).

Our input format is easy to apply rigid or affine transfor-
mations to, as each point transforms independently. Thus
we can add a data-dependent spatial transformer network
that attempts to canonicalize the data before the PointNet
processes them, so as to further improve the results.
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We provide both a theoretical analysis and an ex-
perimental evaluation of our approach. We show that
our network can approximate any set function that is
continuous. More interestingly, it turns out that our network
learns to summarize an input point cloud by a sparse set of
key points, which roughly corresponds to the skeleton of
objects according to visualization. The theoretical analysis
provides an understanding why our PointNet is highly
robust to small perturbation of input points as well as
to corruption through point insertion (outliers) or deletion
(missing data).

On a number of benchmark datasets ranging from shape
classification, part segmentation to scene segmentation,
we experimentally compare our PointNet with state-of-
the-art approaches based upon multi-view and volumetric
representations. Under a unified architecture, not only is
our PointNet much faster in speed, but it also exhibits strong
performance on par or even better than state of the art.

The key contributions of our work are as follows:

• We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

• We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

• We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

• We illustrate the 3D features computed by the selected
neurons in the net and develop intuitive explanations
for its performance.

The problem of processing unordered sets by neural nets
is a very general and fundamental problem – we expect that
our ideas can be transferred to other domains as well.

2. Related Work
Point Cloud Features Most existing features for point
cloud are handcrafted towards specific tasks. Point features
often encode certain statistical properties of points and are
designed to be invariant to certain transformations, which
are typically classified as intrinsic [2, 24, 3] or extrinsic
[20, 19, 14, 10, 5]. They can also be categorized as local
features and global features. For a specific task, it is not
trivial to find the optimal feature combination.

Deep Learning on 3D Data 3D data has multiple popular
representations, leading to various approaches for learning.
Volumetric CNNs: [28, 17, 18] are the pioneers applying
3D convolutional neural networks on voxelized shapes.
However, volumetric representation is constrained by its
resolution due to data sparsity and computation cost of
3D convolution. FPNN [13] and Vote3D [26] proposed
special methods to deal with the sparsity problem; however,

their operations are still on sparse volumes, it’s challenging
for them to process very large point clouds. Multiview
CNNs: [23, 18] have tried to render 3D point cloud or
shapes into 2D images and then apply 2D conv nets to
classify them. With well engineered image CNNs, this
line of methods have achieved dominating performance on
shape classification and retrieval tasks [21]. However, it’s
nontrivial to extend them to scene understanding or other
3D tasks such as point classification and shape completion.
Spectral CNNs: Some latest works [4, 16] use spectral
CNNs on meshes. However, these methods are currently
constrained on manifold meshes such as organic objects
and it’s not obvious how to extend them to non-isometric
shapes such as furniture. Feature-based DNNs: [6, 8]
firstly convert the 3D data into a vector, by extracting
traditional shape features and then use a fully connected net
to classify the shape. We think they are constrained by the
representation power of the features extracted.

Deep Learning on Unordered Sets From a data structure
point of view, a point cloud is an unordered set of vectors.
While most works in deep learning focus on regular input
representations like sequences (in speech and language
processing), images and volumes (video or 3D data), not
much work has been done in deep learning on point sets.

One recent work from Oriol Vinyals et al [25] looks
into this problem. They use a read-process-write network
with attention mechanism to consume unordered input sets
and show that their network has the ability to sort numbers.
However, since their work focuses on generic sets and NLP
applications, there lacks the role of geometry in the sets.

3. Problem Statement

We design a deep learning framework that directly
consumes unordered point sets as inputs. A point cloud is
represented as a set of 3D points {Pi| i = 1, ..., n}, where
each point Pi is a vector of its (x, y, z) coordinate plus extra
feature channels such as color, normal etc. For simplicity
and clarity, unless otherwise noted, we only use the (x, y, z)
coordinate as our point’s channels.

For the object classification task, the input point cloud is
either directly sampled from a shape or pre-segmented from
a scene point cloud. Our proposed deep network outputs
k scores for all the k candidate classes. For semantic
segmentation, the input can be a single object for part region
segmentation, or a sub-volume from a 3D scene for object
region segmentation. Our model will output n ×m scores
for each of the n points and each of the m semantic sub-
categories.
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,
where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ∗ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN



with randomly permuted sequences, the RNN will become
invariant to input order. However in “OrderMatters” [25]
the authors have shown that order does matter and cannot be
totally omitted. While RNN has relatively good robustness
to input ordering for sequences with small length (dozens),
it’s hard to scale to thousands of input elements, which is
the common size for point sets. Empirically, we have also
shown that model based on RNN does not perform as well
as our proposed method (Fig 5).

Our idea is to approximate a general function defined on
a point set by applying a symmetric function on transformed
elements in the set:

f({x1, . . . , xn}) ≈ g(h(x1), . . . , h(xn)), (1)

where f : 2R
N → R, h : RN → RK and g :

RK × · · · × RK︸ ︷︷ ︸
n

→ R is a symmetric function.

Empirically, our basic module is very simple: we
approximate h by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function. This is found to work well by
experiments. Through a collection of h, we can learn a
number of f ’s to capture different properties of the set.

While our key module seems simple, it has interesting
properties (see Sec 5.3) and can achieve strong performace
(see Sec 5.1) in a few different applications. Due to the
simplicity of our module, we are also able to provide
theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output
from the above section forms a vector [f1, . . . , fK ], which
is a global signature of the input set. We can easily
train a SVM or multi-layer perceptron classifier on the
shape global features for classification. However, point
segmentation requires a combination of local and global
knowledge. We can achieve this by a simple yet highly
effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global point cloud feature vec-
tor, we feed it back to per point features by concatenating
the global feature with each of the point features. Then we
extract new per point features based on the combined point
features - this time the per point feature is aware of both the
local and global information.

With this modification our network is able to predict
per point quantities that rely on both local geometry and
global semantics. For example we can accurately predict
per-point normals (fig in supplementary), validating that the
network is able to summarize information from the point’s
local neighborhood. In experiment session, we also show
that our model can achieve state-of-the-art performance on
shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a
point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transforma-
tion. We therefore expect that the learnt representation by
our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical
space before feature extraction. Jaderberg et al. [9]
introduces the idea of spatial transformer to align 2D
images through sampling and interpolation, achieved by a
specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this
goal in a much simpler way compared with [9]. We do not
need to invent any new layers and no alias is introduced as in
the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction,
max pooling and fully connected layers. More details about
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation
matrix to align features from different input point clouds.
However, transformation matrix in the feature space has
much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lreg = ‖I −AAT ‖2F , (2)

where A is the feature alignment matrix predicted by a
mini-network. An orthogonal transformation will not lose
information in the input, thus is desired. We find that by
adding the regularization term, the optimization becomes
more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal
approximation ability of our neural network to continuous
set functions. By the continuity of set functions, intuitively,
a small perturbation to the input point set should not
greatly change the function values, such as classification or
segmentation scores.

Formally, let X = {S : S ⊆ [0, 1]m and |S| = n}, f :
X → R is a continuous set function on X w.r.t to Hausdorff
distance dH(·, ·), i.e., ∀ε > 0,∃δ > 0, for any S, S′ ∈ X ,
if dH(S, S′) < δ, then |f(S) − f(S′)| < ε. Our theorem
says that f can be arbitrarily approximated by our network
given enough neurons at the max pooling layer, i.e., K in
(1) is sufficiently large.
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Figure 3. Qualitative results for part segmentation. We
visualize the CAD part segmentation results across all 16 object
categories. We show both results for partial simulated Kinect scans
(left block) and complete ShapeNet CAD models (right block).

Theorem 1. Suppose f : X → R is a continuous
set function w.r.t Hausdorff distance dH(·, ·). ∀ε >
0, ∃ a continuous function h and a symmetric function
g(x1, . . . , xn) = γ ◦MAX, such that for any S ∈ X ,∣∣∣∣f(S)− γ (MAX

xi∈S
{h(xi)}

)∣∣∣∣ < ε

where x1, . . . , xn is the full list of elements in S ordered
arbitrarily, γ is a continuous function, and MAX is a vector
max operator that takes n vectors as input and returns a
new vector of the element-wise maximum.

The proof to this theorem can be found in our supple-
mentary material. The key idea is that in the worst case the
network can learn to convert a point cloud into a volumetric
representation, by partitioning the space into equal-sized
voxels. In practice, however, the network learns a much
smarter strategy to probe the space, as we shall see in point
function visualizations.

Bottleneck dimension and stability Theoretically and
experimentally we find that the expressiveness of our
network is strongly affected by the dimension of the max
pooling layer, i.e., K in (1). Here we provide an analysis,
which also reveals properties related to the stability of our
model.

We define u = MAX
xi∈S

{h(xi)} to be the sub-network of f

which maps a point set in [0, 1]m to aK-dimensional vector.
The following theorem tells us that small corruptions or
extra noise points in the input set are not likely to change
the output of our network:

Theorem 2. Suppose u : X → RK such that u =
MAX
xi∈S
{h(xi)} and f = γ ◦ u. Then,

(a) ∀S, ∃ CS ,NS ⊆ X , f(T ) = f(S) if CS ⊆ T ⊆ NS;

(b) |CS | ≤ K

input #views accuracy accuracy
avg. class overall

SPH [11] mesh - 68.2 -
3DShapeNets [28] volume 1 77.3 84.7
VoxNet [17] volume 12 83.0 85.9
Subvolume [18] volume 20 86.0 89.2
LFD [28] image 10 75.5 -
MVCNN [23] image 80 90.1 -
Ours baseline point - 72.6 77.4
Ours PointNet point 1 86.2 89.2

Table 1. Classification results on ModelNet40. Our net achieves
state-of-the-art among deep nets on 3D input.

We explain the implications of the theorem. (a) says that
f(S) is unchanged up to the input corruption if all points
in CS are preserved; it is also unchanged with extra noise
points up to NS . (b) says that CS only contains a bounded
number of points, determined by K in (1). In other words,
f(S) is in fact totally determined by a finite subset CS ⊆ S
of less or equal to K elements. We therefore call CS the
critical point set of S and K the bottleneck dimension of f .

Combined with the continuity of h, this explains the
robustness of our model w.r.t point perturbation, corruption
and extra noise points. The robustness is gained in analogy
to the sparsity principle in machine learning models.
Intuitively, our network learns to summarize a shape by
a sparse set of key points. In experiment section we see
that the key points form the skeleton of an object.

5. Experiment
Experiments are divided into four parts. First, we show

PointNets can be applied to multiple 3D recognition tasks
(Sec 5.1). Second, we provide detailed experiments to
validate our network design (Sec 5.2). At last we visualize
what the network learns (Sec 5.3) and analyze time and
space complexity (Sec 5.4).

5.1. Applications

In this section we show how our network can be
trained to perform 3D object classification, object part
segmentation and semantic scene segmentation 1. Even
though we are working on a brand new data representation
(point sets), we are able to achieve comparable or even
better performance on benchmarks for several tasks.

3D Object Classification Our network learns global
point cloud feature that can be used for object classification.
We evaluate our model on the ModelNet40 [28] shape
classification benchmark. There are 12,311 CAD models
from 40 man-made object categories, split into 9,843 for

1More application examples such as correspondence and point cloud
based CAD model retrieval are included in supplementary material.



mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Wu [27] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8
Yi [29] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
3DCNN 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
Ours 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

Table 2. Segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points. We compare with two traditional methods [27]
and [29] and a 3D fully convolutional network baseline proposed by us. Our PointNet method achieved the state-of-the-art in mIoU.

training and 2,468 for testing. While previous methods
focus on volumetric and mult-view image representations,
we are the first to directly work on raw point cloud.

We uniformly sample 1024 points on mesh faces accord-
ing to face area and normalize them into a unit sphere.
During training we augment the point cloud on-the-fly by
randomly rotating the object along the up-axis and jitter the
position of each points by a Gaussian noise with zero mean
and 0.02 standard deviation.

In Table 1, we compare our model with previous works
as well as our baseline using MLP on traditional features
extracted from point cloud (point density, D2, shape contour
etc.). Our model achieved state-of-the-art performance
among methods based on 3D input (volumetric and point
cloud). With only fully connected layers and max pooling,
our net gains a strong lead in inference speed and can be
easily parallelized in CPU as well. There is still a small
gap between our method and multi-view based method
(MVCNN [23]), which we think is due to the loss of fine
geometry details that can be captured by rendered images.

3D Object Part Segmentation Part segmentation is a
challenging fine-grained 3D recognition task. Given a 3D
scan or a mesh model, the task is to assign part category
label (e.g. chair leg, cup handle) to each point or face.

We evaluate on ShapeNet part data set from [29], which
contains 16,881 shapes from 16 categories, annotated with
50 parts in total. Most object categories are labeled with
two to five parts. Ground truth annotations are labeled on
sampled points on the shapes.

We formulate part segmentation as a per-point classifi-
cation problem. Evaluation metric is mIoU on points. For
each shape S of category C, to calculate the shape’s mIoU:
For each part type in category C, compute IoU between
groundtruth and prediction. If the union of groundtruth and
prediction points is empty, then count part IoU as 1. Then
we average IoUs for all part types in category C to get mIoU
for that shape. To calculate mIoU for the category, we take
average of mIoUs for all shapes in that category.

In this section, we compare our segmentation version
PointNet (a modified version of Fig 2, Segmentation
Network) with two traditional methods [27] and [29] that
both take advantage of point-wise geometry features and

correspondences between shapes, as well as our own
3D CNN baseline. See supplementary for the detailed
modifications and network architecture for the 3D CNN.

In Table 2, we report per-category and mean IoU(%)
scores. We observe a 2.3% mean IoU improvement and our
net beats the baseline methods in most categories.

We also perform experiments on simulated Kinect scans
to test the robustness of these methods. For every CAD
model in the ShapeNet part data set, we use Blensor Kinect
Simulator [7] to generate incomplete point clouds from six
random viewpoints. We train our PointNet on the complete
shapes and partial scans with the same network architecture
and training setting. Results show that we lose only 5.3%
mean IoU. In Fig 3, we present qualitative results on both
complete and partial data. One can see that though partial
data is fairly challenging, our predictions are reasonable.

Semantic Segmentation in Scenes Our network on part
segmentation can be easily extended to semantic scene
segmentation, where point labels become semantic object
classes instead of object part labels.

We experiment on the Stanford 3D semantic parsing data
set [1]. The dataset contains 3D scans from Matterport
scanners in 6 areas including 271 rooms. Each point in the
scan is annotated with one of the semantic labels from 13
categories (chair, table, floor, wall etc. plus clutter).

To prepare training data, we firstly split points by room,
and then sample rooms into blocks with area 1m by 1m.
We train our segmentation version of PointNet to predict

mean IoU overall accuracy
Ours baseline 20.12 53.19
Ours PointNet 47.71 78.62

Table 3. Results on semantic segmentation in scenes. Metric is
average IoU over 13 classes (structural and furniture elements plus
clutter) and classification accuracy calculated on points.

table chair sofa board mean
# instance 455 1363 55 137
Armeni et al. [1] 46.02 16.15 6.78 3.91 18.22
Ours 46.67 33.80 4.76 11.72 24.24

Table 4. Results on 3D object detection in scenes. Metric is
average precision with threshold IoU 0.5 computed in 3D volumes.
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Figure 4. Qualitative results for semantic segmentation. Top
row is input point cloud with color. Bottom row is output semantic
segmentation result (on points) displayed in the same camera
viewpoint as input.

per point class in each block. Each point is represented by
a 9-dim vector of XYZ, RGB and normalized location as
to the room (from 0 to 1). At training time, we randomly
sample 4096 points in each block on-the-fly. At test time,
we test on all the points. We follow the same protocol as [1]
to use k-fold strategy for train and test.

We compare our method with a baseline using hand-
crafted point features. The baseline extracts the same 9-
dim local features and three additional ones: local point
density, local curvature and normal. We use standard MLP
as the classifier. Results are shown in Table 3, where
our PointNet method significantly outperforms the baseline
method. In Fig 4, we show qualitative segmentation results.
Our network is able to output smooth predictions and is
robust to missing points and occlusions.

Based on the semantic segmentation output from our
network, we further build a 3D object detection system
using connected component for object proposal (see sup-
plementary for details). We compare with previous state-
of-the-art method in Table 4. The previous method is based
on a sliding shape method (with CRF post processing) with
SVMs trained on local geometric features and global room
context feature in voxel grids. Our method outperforms it
by a large margin on the furniture categories reported.

5.2. Architecture Design Analysis

In this section we validate our design choices by control
experiments. We also show the effects of our network’s
hyperparameters.

Comparison with Alternative Order-invariant Methods
As mentioned in Sec 4.2, there are at least three options for
consuming unordered set inputs. We use the ModelNet40
shape classification problem as a test bed for comparisons
of those options, the following two control experiment will
also use this task.

The baselines (illustrated in Fig 5) we compared with
include multi-layer perceptron on unsorted and sorted
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Figure 5. Three approaches to achieve order invariance. Multi-
layer perceptron (MLP) applied on points consists of 5 hidden
layers with neuron sizes 64,64,64,128,1024, all points share a
single copy of MLP. The MLP close to the output consists of two
layers with sizes 512,256.

points as n×3 arrays, RNN model that considers input point
as a sequence, and a model based on symmetry functions.
The symmetry operation we experimented include max
pooling, average pooling and an attention based weighted
sum. The attention method is similar to that in [25], where
a scalar score is predicted from each point feature, then the
score is normalized across points by computing a softmax.
The weighted sum is then computed on the normalized
scores and the point features. As shown in Fig 5, max-
pooling operation achieves the best performance by a large
winning margin, which validates our choice.

Effectiveness of Input and Feature Transformations In
Table 5 we demonstrate the positive effects of our input
and feature transformations (for alignment). It’s interesting
to see that the most basic architecture already achieves
quite reasonable results. Using input transformation gives
a 0.8% performance boost. The regularization loss is
necessary for the higher dimension transform to work.
By combining both transformations and the regularization
term, we achieve the best performance.

Robustness Test We show our PointNet, while simple
and effective, is robust to various kinds of input corruptions.
We use the same architecture as in Fig 5’s max pooling
network. Input points are normalized into a unit sphere.
Results are in Fig 6.

As to missing points, when there are 50% points missing,
the accuracy only drops by 2.4% and 3.8% w.r.t. furthest
and random input sampling. Our net is also robust to outlier

Transform accuracy
none 87.1
input (3x3) 87.9
feature (64x64) 86.9
feature (64x64) + reg. 87.4
both 89.2

Table 5. Effects of input feature transforms. Metric is overall
classification accuracy on ModelNet40 test set.
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Figure 6. PointNet robustness test. The metric is overall
classification accuracy on ModelNet40 test set. Left: Delete
points. Furthest means the original 1024 points are sampled with
furthest sampling. Middle: Insertion. Outliers uniformly scattered
in the unit sphere. Right: Perturbation. Add Gaussian noise to
each point independently.

points, if it has seen those during training. We evaluate two
models: one trained on points with (x, y, z) coordinates; the
other on (x, y, z) plus point density. The net has more than
80% accuracy even when 20% of the points are outliers.
Fig 6 right shows the net is robust to point perturbations.

5.3. Visualizing PointNet

In Fig 7, we visualize critical point sets CS and upper-
bound shapes NS (as discussed in Thm 2) for some sample
shapes S. The point sets between the two shapes will give
exactly the same global shape feature f(S).

We can see clearly from Fig 7 that the critical point
sets CS , those contributed to the max pooled feature,
summarizes the skeleton of the shape. The upper-bound
shapes NS illustrates the largest possible point cloud that
give the same global shape feature f(S) as the input point
cloud S. CS and NS reflect the robustness of PointNet,
meaning that losing some non-critical points does not
change the global shape signature f(S) at all.

The NS is constructed by forwarding all the points in a
edge-length-2 cube through the network and select points p
whose point function values (h1(p), h2(p), · · · , hK(p)) are
no larger than the global shape descriptor.

O
rig

in
al

 S
ha

pe
C

rit
ic

al
 P

oi
nt

 S
et

s
U

pp
er

-b
ou

nd
 S

ha
pe

s

Figure 7. Critical points and upper bound shape. While critical
points jointly determine the global shape feature for a given shape,
any point cloud that falls between the critical points set and the
upper bound shape gives exactly the same feature. We color-code
all figures to show the depth information.

5.4. Time and Space Complexity Analysis

Table 6 summarizes space (number of parameters in
the network) and time (floating-point operations/sample)
complexity of our classification PointNet. We also compare
PointNet to a representative set of volumetric and multi-
view based architectures in previous works.

While MVCNN [23] and Subvolume (3D CNN) [18]
achieve high performance, PointNet is orders more efficient
in computational cost (measured in FLOPs/sample: 141x
and 8x more efficient, respectively). Besides, PointNet
is much more space efficient than MVCNN in terms of
#param in the network (17x less parameters). Moreover,
PointNet is much more scalable – it’s space and time
complexity is O(N) – linear in the number of input points.
However, since convolution dominates computing time,
multi-view method’s time complexity grows squarely on
image resolution and volumetric convolution based method
grows cubically with the volume size.

Empirically, PointNet is able to process more than
one million points per second for point cloud classifica-
tion (around 1K objects/second) or semantic segmentation
(around 2 rooms/second) with a 1080X GPU on Tensor-
Flow, showing great potential for real-time applications.

#params FLOPs/sample
PointNet (vanilla) 0.8M 148M
PointNet 3.5M 440M
Subvolume [18] 16.6M 3633M
MVCNN [23] 60.0M 62057M

Table 6. Time and space complexity of deep architectures for
3D data classification. PointNet (vanilla) is the classification
PointNet without input and feature transformations. FLOP
stands for floating-point operation. The “M” stands for million.
Subvolume and MVCNN used pooling on input data from multiple
rotations or views, without which they have much inferior
performance.

6. Conclusion

In this work, we propose a novel deep neural network
PointNet that directly consumes point cloud. Our network
provides a unified approach to a number of 3D recognition
tasks including object classification, part segmentation and
semantic segmentation, while obtaining on par or better
results than state of the arts on standard benchmarks. We
also provide theoretical analysis and visualizations towards
understanding of our network.
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Supplementary

A. Overview
This document provides additional quantitative results,

technical details and more qualitative test examples to the
main paper.

In Sec B we extend the robustness test to compare
PointNet with VoxNet on incomplete input. In Sec C
we provide more details on neural network architectures,
training parameters and in Sec D we describe our detection
pipeline in scenes. Then Sec E illustrates more applications
of PointNet, while Sec F shows more analysis experiments.
Sec G provides a proof for our theory on PointNet. At last,
we show more visualization results in Sec H.

B. Comparison between PointNet and VoxNet
(Sec 5.2)

We extend the experiments in Sec 5.2 Robustness Test
to compare PointNet and VoxNet [17] (a representative
architecture for volumetric representation) on robustness to
missing data in the input point cloud. Both networks are
trained on the same train test split with 1024 number of
points as input. For VoxNet we voxelize the point cloud
to 32 × 32 × 32 occupancy grids and augment the training
data by random rotation around up-axis and jittering.

At test time, input points are randomly dropped out
by a certain ratio. As VoxNet is sensitive to rotations,
its prediction uses average scores from 12 viewpoints of
a point cloud. As shown in Fig 8, we see that our
PointNet is much more robust to missing points. VoxNet’s
accuracy dramatically drops when half of the input points
are missing, from 86.3% to 46.0% with a 40.3% difference,
while our PointNet only has a 3.7% performance drop. This
can be explained by the theoretical analysis and explanation
of our PointNet – it is learning to use a collection of critical
points to summarize the shape, thus it is very robust to
missing data.

C. Network Architecture and Training Details
(Sec 5.1)

PointNet Classification Network As the basic archi-
tecture is already illustrated in the main paper, here we
provides more details on the joint alignment/transformation
network and training parameters.

The first transformation network is a mini-PointNet that
takes raw point cloud as input and regresses to a 3 × 3
matrix. It’s composed of a shared MLP (64, 128, 1024)
network (with layer output sizes 64, 128, 1024) on each
point, a max pooling across points and two fully connected
layers with output sizes 512, 256. The output matrix is
initialized as an identity matrix. All layers, except the last
one, include ReLU and batch normalization. The second

Furthest Random
0 87.1 87.1

0.5 85.7 83.3
0.75 81.3 74
0.875 69.2 59.2
0.9375 49.1 33.2

PointNet VoxNet
0 87.1 86.3

0.5 83.3 46
0.75 74 18.5
0.875 59.2 13.3
0.9375 33.2 10.2
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Figure 8. PointNet v.s. VoxNet [17] on incomplete input data.
Metric is overall classification accurcacy on ModelNet40 test set.
Note that VoxNet is using 12 viewpoints averaging while PointNet
is using only one view of the point cloud. Evidently PointNet
presents much stronger robustness to missing points.

transformation network has the same architecture as the first
one except that the output is a 64 × 64 matrix. The matrix
is also initialized as an identity. A regularization loss (with
weight 0.001) is added to the softmax classification loss to
make the matrix close to orthogonal.

We use dropout with keep ratio 0.7 on the last fully
connected layer, whose output dimension 256, before class
score prediction. The decay rate for batch normalization
starts with 0.5 and is gradually increased to 0.99. We use
adam optimizer with initial learning rate 0.001, momentum
0.9 and batch size 32. The learning rate is divided by 2
every 20 epochs. Training on ModelNet takes 3-6 hours to
converge with TensorFlow and a GTX1080 GPU.

PointNet Segmentation Network The segmentation net-
work is an extension to the classification PointNet. Local
point features (the output after the second transformation
network) and global feature (output of the max pooling)
are concatenated for each point. No dropout is used for
segmentation network. Training parameters are the same
as the classification network.

As to the task of shape part segmentation, we made
a few modifications to the basic segmentation network
architecture (Fig 2 in main paper) in order to achieve best
performance, as illustrated in Fig 9. We add a one-hot
vector indicating the class of the input and concatenate it
with the max pooling layer’s output. We also increase
neurons in some layers and add skip links to collect local
point features in different layers and concatenate them to
form point feature input to the segmentation network.

While [27] and [29] deal with each object category
independently, due to the lack of training data for some
categories (the total number of shapes for all the categories
in the data set are shown in the first line), we train our
PointNet across categories (but with one-hot vector input to
indicate category). To allow fair comparison, when testing
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Figure 9. Network architecture for part segmentation. T1 and
T2 are alignment/transformation networks for input points and
features. FC is fully connected layer operating on each point. MLP
is multi-layer perceptron on each point. One-hot is a vector of size
16 indicating category of the input shape.
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Figure 10. Baseline 3D CNN segmentation network. The
network is fully convolutional and predicts part scores for each
voxel.

these two models, we only predict part labels for the given
specific object category.

As to semantic segmentation task, we used the architec-
ture as in Fig 2 in the main paper.

It takes around six to twelve hours to train the model on
ShapeNet part dataset and around half a day to train on the
Stanford semantic parsing dataset.

Baseline 3D CNN Segmentation Network In ShapeNet
part segmentation experiment, we compare our proposed
segmentation version PointNet to two traditional methods
as well as a 3D volumetric CNN network baseline. In
Fig 10, we show the baseline 3D volumetric CNN network
we use. We generalize the well-known 3D CNN architec-
tures, such as VoxNet [17] and 3DShapeNets [28] to a fully
convolutional 3D CNN segmentation network.

For a given point cloud, we first convert it to the volu-
metric representation as a occupancy grid with resolution
32 × 32 × 32. Then, five 3D convolution operations each
with 32 output channels and stride of 1 are sequentially
applied to extract features. The receptive field is 19 for each
voxel. Finally, a sequence of 3D convolutional layers with
kernel size 1 × 1 × 1 is appended to the computed feature
map to predict segmentation label for each voxel. ReLU and

batch normalization are used for all layers except the last
one. The network is trained across categories, however, in
order to compare with other baseline methods where object
category is given, we only consider output scores in the
given object category.

D. Details on Detection Pipeline (Sec 5.1)
We build a simple 3D object detection system based on

the semantic segmentation results and our object classifica-
tion PointNet.

We use connected component with segmentation scores
to get object proposals in scenes. Starting from a random
point in the scene, we find its predicted label and use
BFS to search nearby points with the same label, with
a search radius of 0.2 meter. If the resulted cluster has
more than 200 points (assuming a 4096 point sample in
a 1m by 1m area), the cluster’s bounding box is marked
as one object proposal. For each proposed object, it’s
detection score is computed as the average point score for
that category. Before evaluation, proposals with extremely
small areas/volumes are pruned. For tables, chairs and
sofas, the bounding boxes are extended to the floor in case
the legs are separated with the seat/surface.

We observe that in some rooms such as auditoriums
lots of objects (e.g. chairs) are close to each other, where
connected component would fail to correctly segment out
individual ones. Therefore we leverage our classification
network and uses sliding shape method to alleviate the
problem for the chair class. We train a binary classification
network for each category and use the classifier for sliding
window detection. The resulted boxes are pruned by
non-maximum suppression. The proposed boxes from
connected component and sliding shapes are combined for
final evaluation.

In Fig 11, we show the precision-recall curves for object
detection. We trained six models, where each one of them
is trained on five areas and tested on the left area. At test
phase, each model is tested on the area it has never seen.
The test results for all six areas are aggregated for the PR
curve generation.

E. More Applications (Sec 5.1)
Model Retrieval from Point Cloud Our PointNet learns
a global shape signature for every given input point cloud.
We expect geometrically similar shapes have similar global
signature. In this section, we test our conjecture on the
shape retrieval application. To be more specific, for every
given query shape from ModelNet test split, we compute
its global signature (output of the layer before the score
prediction layer) given by our classification PointNet and
retrieve similar shapes in the train split by nearest neighbor
search. Results are shown in Fig 12.



Figure 11. Precision-recall curves for object detection in 3D
point cloud. We evaluated on all six areas for four categories:
table, chair, sofa and board. IoU threshold is 0.5 in volume.

Query
Point Cloud

Top-5 Retrieval CAD Models

Figure 12. Model retrieval from point cloud. For every
given point cloud, we retrieve the top-5 similar shapes from the
ModelNet test split. From top to bottom rows, we show examples
of chair, plant, nightstand and bathtub queries. Retrieved results
that are in wrong category are marked by red boxes.

Shape Correspondence In this section, we show that
point features learnt by PointNet can be potentially used
to compute shape correspondences. Given two shapes, we
compute the correspondence between their critical point
sets CS’s by matching the pairs of points that activate
the same dimensions in the global features. Fig 13 and
Fig 14 show the detected shape correspondence between
two similar chairs and tables.

F. More Architecture Analysis (Sec 5.2)

Effects of Bottleneck Dimension and Number of Input
Points Here we show our model’s performance change
with regard to the size of the first max layer output as
well as the number of input points. In Fig 15 we see that
performance grows as we increase the number of points
however it saturates at around 1K points. The max layer
size plays an important role, increasing the layer size from

Figure 13. Shape correspondence between two chairs. For the
clarity of the visualization, we only show 20 randomly picked
correspondence pairs.

Figure 14. Shape correspondence between two tables. For the
clarity of the visualization, we only show 20 randomly picked
correspondence pairs.

64 to 1024 results in a 2−4% performance gain. It indicates
that we need enough point feature functions to cover the 3D
space in order to discriminate different shapes.

It’s worth notice that even with 64 points as input
(obtained from furthest point sampling on meshes), our
network can achieve decent performance.

81 
82 
83 
84 
85 
86 
87 
88 

0 200 400 600 800 1000 

A
cc

ur
ac

y 
(%

) 

Bottleneck size 

64 

128 

512 

1024 

2048 

#points

Figure 15. Effects of bottleneck size and number of input
points. The metric is overall classification accuracy on Model-
Net40 test set.

MNIST Digit Classification While we focus on 3D point
cloud learning, a sanity check experiment is to apply our
network on a 2D point clouds - pixel sets.

To convert an MNIST image into a 2D point set we
threshold pixel values and add the pixel (represented as a



point with (x, y) coordinate in the image) with values larger
than 128 to the set. We use a set size of 256. If there are
more than 256 pixels int he set, we randomly sub-sample it;
if there are less, we pad the set with the one of the pixels in
the set (due to our max operation, which point to use for the
padding will not affect outcome).

As seen in Table 7, we compare with a few baselines
including multi-layer perceptron that considers input image
as an ordered vector, a RNN that consider input as sequence
from pixel (0,0) to pixel (27,27), and a vanilla version CNN.
While the best performing model on MNIST is still well
engineered CNNs (achieving less than 0.3% error rate),
it’s interesting to see that our PointNet model can achieve
reasonable performance by considering image as a 2D point
set.

input error (%)
Multi-layer perceptron [22] vector 1.60
LeNet5 [12] image 0.80
Ours PointNet point set 0.78

Table 7. MNIST classification results. We compare with vanilla
versions of other deep architectures to show that our network based
on point sets input is achieving reasonable performance on this
traditional task.

Normal Estimation In segmentation version of PointNet,
local point features and global feature are concatenated
in order to provide context to local points. However,
it’s unclear whether the context is learnt through this
concatenation. In this experiment, we validate our design
by showing that our segmentation network can be trained
to predict point normals, a local geometric property that is
determined by a point’s neighborhood.

We train a modified version of our segmentation Point-
Net in a supervised manner to regress to the ground-
truth point normals. We just change the last layer of our
segmentation PointNet to predict normal vector for each
point. We use absolute value of cosine distance as loss.

Fig. 16 compares our PointNet normal prediction results
(the left columns) to the ground-truth normals computed
from the mesh (the right columns). We observe a
reasonable normal reconstruction. Our predictions are
more smooth and continuous than the ground-truth which
includes flipped normal directions in some region.

Segmentation Robustness As discussed in Sec 5.2 and
Sec B, our PointNet is less sensitive to data corruption and
missing points for classification tasks since the global shape
feature is extracted from a collection of critical points from
the given input point cloud. In this section, we show that the
robustness holds for segmentation tasks too. The per-point
part labels are predicted based on the combination of per-
point features and the learnt global shape feature. In Fig 17,

Ground-truthPrediction
Figure 16. PointNet normal reconstrution results. In this figure,
we show the reconstructed normals for all the points in some
sample point clouds and the ground-truth normals computed on
the mesh.

we illustrate the segmentation results for the given input
point clouds S (the left-most column), the critical point sets
CS (the middle column) and the upper-bound shapes NS .

Network Generalizability to Unseen Shape Categories
In Fig 18, we visualize the critical point sets and the upper-
bound shapes for new shapes from unseen categories (face,
house, rabbit, teapot) that are not present in ModelNet or
ShapeNet. It shows that the learnt per-point functions are
generalizable. However, since we train mostly on man-
made objects with lots of planar structures, the recon-
structed upper-bound shape in novel categories also contain
more planar surfaces.

G. Proof of Theorem (Sec 4.3)
Let X = {S : S ⊆ [0, 1] and |S| = n}.
f : X → R is a continuous function on X w.r.t to

Hausdorff distance dH(·, ·) if the following condition is
satisfied:
∀ε > 0,∃δ > 0, for any S, S′ ∈ X , if dH(S, S′) < δ,

then |f(S)− f(S′)| < ε.
We show that f can be approximated arbitrarily by

composing a symmetric function and a continuous function.



Input Point Cloud Critical Point Sets Upper-bound Shapes

Figure 17. The consistency of segmentation results. We
illustrate the segmentation results for some sample given point
clouds S, their critical point sets CS and upper-bound shapes NS .
We observe that the shape family between the CS and NS share a
consistent segmentation results.
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Figure 18. The critical point sets and the upper-bound shapes
for unseen objects. We visualize the critical point sets and the
upper-bound shapes for teapot, bunny, hand and human body,
which are not in the ModelNet or ShapeNet shape repository to
test the generalizability of the learnt per-point functions of our
PointNet on other unseen objects. The images are color-coded
to reflect the depth information.

Theorem 1. Suppose f : X → R is a continuous
set function w.r.t Hausdorff distance dH(·, ·). ∀ε >
0, ∃ a continuous function h and a symmetric function
g(x1, . . . , xn) = γ◦MAX, where γ is a continuous function,
MAX is a vector max operator that takes n vectors as input
and returns a new vector of the element-wise maximum,
such that for any S ∈ X ,

|f(S)− γ(MAX(h(x1), . . . , h(xn)))| < ε

where x1, . . . , xn are the elements of S extracted in certain

order,

Proof. By the continuity of f , we take δε so that |f(S) −
f(S′)| < ε for any S, S′ ∈ X if dH(S, S′) < δε.

Define K = d1/δεe, which split [0, 1] into K intervals
evenly and define an auxiliary function that maps a point to
the left end of the interval it lies in:

σ(x) =
bKxc
K

Let S̃ = {σ(x) : x ∈ S}, then

|f(S)− f(S̃)| < ε

because dH(S, S̃) < 1/K ≤ δε.
Let hk(x) = e−d(x,[

k−1
K , k

K ]) be a soft indicator function
where d(x, I) is the point to set (interval) distance. Let
h(x) = [h1(x); . . . ;hK(x)], then h : R→ RK .

Let vj(x1, . . . , xn) = max{h̃j(x1), . . . , h̃j(xn)}, indi-
cating the occupancy of the j-th interval by points in S.
Let v = [v1; . . . ; vK ], then v : R× . . .× R︸ ︷︷ ︸

n

→ {0, 1}K

is a symmetric function, indicating the occupancy of each
interval by points in S.

Define τ : {0, 1}K → X as τ(v) = {k−1K : vk ≥ 1},
which maps the occupancy vector to a set which contains
the left end of each occupied interval. It is easy to show:

τ(v(x1, . . . , xn)) ≡ S̃

where x1, . . . , xn are the elements of S extracted in certain
order.

Let γ : RK → R be a continuous function such that
γ(v) = f(τ(v)) for v ∈ {0, 1}K . Then,

|γ(v(x1, . . . , xn))− f(S)|
=|f(τ(v(x1, . . . , xn)))− f(S)| < ε

Note that γ(v(x1, . . . , xn)) can be rewritten as follows:

γ(v(x1, . . . , xn)) =γ(MAX(h(x1), . . . ,h(xn)))

=(γ ◦MAX)(h(x1), . . . ,h(xn))

Obviously γ ◦MAX is a symmetric function.

Next we give the proof of Theorem 2. We define
u = MAX

xi∈S
{h(xi)} to be the sub-network of f which

maps a point set in [0, 1]m to a K-dimensional vector. The
following theorem tells us that small corruptions or extra
noise points in the input set is not likely to change the output
of our network:

Theorem 2. Suppose u : X → RK such that u =
MAX
xi∈S
{h(xi)} and f = γ ◦ u. Then,



(a) ∀S, ∃ CS ,NS ⊆ X , f(T ) = f(S) if CS ⊆ T ⊆ NS;

(b) |CS | ≤ K

Proof. Obviously, ∀S ∈ X , f(S) is determined by u(S).
So we only need to prove that ∀S, ∃ CS ,NS ⊆ X , f(T ) =
f(S) if CS ⊆ T ⊆ NS .

For the jth dimension as the output of u, there exists at
least one xj ∈ X such that hj(xj) = uj , where hj is the
jth dimension of the output vector from h. Take CS as the
union of all xj for j = 1, . . . ,K. Then, CS satisfies the
above condition.

Adding any additional points x such that h(x) ≤ u(S) at
all dimensions to CS does not change u, hence f . Therefore,
TS can be obtained adding the union of all such points to
NS .

Figure 19. Point function visualization. For each per-point
function h, we calculate the values h(p) for all the points p in a
cube of diameter two located at the origin, which spatially covers
the unit sphere to which our input shapes are normalized when
training our PointNet. In this figure, we visualize all the points
p that give h(p) > 0.5 with function values color-coded by the
brightness of the voxel. We randomly pick 15 point functions and
visualize the activation regions for them.

H. More Visualizations

Classification Visualization We use t-SNE[15] to embed
point cloud global signature (1024-dim) from our classifica-
tion PointNet into a 2D space. Fig 20 shows the embedding
space of ModelNet 40 test split shapes. Similar shapes are
clustered together according to their semantic categories.

Segmentation Visualization We present more segmenta-
tion results on both complete CAD models and simulated
Kinect partial scans. We also visualize failure cases with
error analysis. Fig 21 and Fig 22 show more segmentation
results generated on complete CAD models and their
simulated Kinect scans. Fig 23 illustrates some failure
cases. Please read the caption for the error analysis.

Scene Semantic Parsing Visualization We give a visual-
ization of semantic parsing in Fig 24 where we show input
point cloud, prediction and ground truth for both semantic
segmentation and object detection for two office rooms and
one conference room. The area and the rooms are unseen in
the training set.

Point Function Visualization Our classification Point-
Net computes K (we take K = 1024 in this visualization)
dimension point features for each point and aggregates
all the per-point local features via a max pooling layer
into a single K-dim vector, which forms the global shape
descriptor.

To gain more insights on what the learnt per-point
functions h’s detect, we visualize the points pi’s that
give high per-point function value f(pi) in Fig 19. This
visualization clearly shows that different point functions
learn to detect for points in different regions with various
shapes scattered in the whole space.



Figure 20. 2D embedding of learnt shape global features. We use t-SNE technique to visualize the learnt global shape features for the
shapes in ModelNet40 test split.
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Figure 21. PointNet segmentation results on complete CAD models.
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Figure 22. PointNet segmentation results on simulated Kinect scans.



(d)

(b)

(c)

(a)

(e)

(f)

Figure 23. PointNet segmentation failure cases. In this figure, we summarize six types of common errors in our segmentation application.
The prediction and the ground-truth segmentations are given in the first and second columns, while the difference maps are computed and
shown in the third columns. The red dots correspond to the wrongly labeled points in the given point clouds. (a) illustrates the most
common failure cases: the points on the boundary are wrongly labeled. In the examples, the label predictions for the points near the
intersections between the table/chair legs and the tops are not accurate. However, most segmentation algorithms suffer from this error. (b)
shows the errors on exotic shapes. For examples, the chandelier and the airplane shown in the figure are very rare in the data set. (c) shows
that small parts can be overwritten by nearby large parts. For example, the jet engines for airplanes (yellow in the figure) are mistakenly
classified as body (green) or the plane wing (purple). (d) shows the error caused by the inherent ambiguity of shape parts. For example,
the two bottoms of the two tables in the figure are classified as table legs and table bases (category other in [29]), while ground-truth
segmentation is the opposite. (e) illustrates the error introduced by the incompleteness of the partial scans. For the two caps in the figure,
almost half of the point clouds are missing. (f) shows the failure cases when some object categories have too less training data to cover
enough variety. There are only 54 bags and 39 caps in the whole dataset for the two categories shown here.



Figure 24. Examples of semantic segmentation and object detection. First row is input point cloud, where walls and ceiling are hided
for clarity. Second and third rows are prediction and ground-truth of semantic segmentation on points, where points belonging to different
semantic regions are colored differently (chairs in red, tables in purple, sofa in orange, board in gray, bookcase in green, floors in blue,
windows in violet, beam in yellow, column in magenta, doors in khaki and clutters in black). The last two rows are object detection with
bounding boxes, where predicted boxes are from connected components based on semantic segmentation prediction.


